Association of intercellular adhesion molecule 1 (ICAM1) with diabetes and diabetic nephropathy

نویسندگان

  • Harvest F. Gu
  • Jun Ma
  • Karolin T. Gu
  • Kerstin Brismar
چکیده

Diabetes and diabetic nephropathy are complex diseases affected by genetic and environmental factors. Identification of the susceptibility genes and investigation of their roles may provide useful information for better understanding of the pathogenesis and for developing novel therapeutic approaches. Intercellular adhesion molecule 1 (ICAM1) is a cell surface glycoprotein expressed on endothelial cells and leukocytes in the immune system. The ICAM1 gene is located on chromosome 19p13 within the linkage region of diabetes. In the recent years, accumulating reports have implicated that genetic polymorphisms in the ICAM1 gene are associated with diabetes and diabetic nephropathy. Serum ICAM1 levels in diabetes patients and the icam1 gene expression in kidney tissues of diabetic animals are increased compared to the controls. Therefore, ICAM1 may play a role in the development of diabetes and diabetic nephropathy. In this review, we present genomic structure, variation, and regulation of the ICAM1 gene, summarized genetic and biological studies of this gene in diabetes and diabetic nephropathy and discussed about the potential application using ICAM1 as a biomarker and target for prediction and treatment of diabetes and diabetic nephropathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic influences of the intercellular adhesion molecule 1 (ICAM-1) gene polymorphisms in development of Type 1 diabetes and diabetic nephropathy

AIM The intercellular adhesion molecule-1 (ICAM-1) gene is located on chromosome 19p13, which is linked to Type 1 diabetes (T1D). ICAM-1 expression is related to development of T1D and diabetic nephropathy. The present study aims to evaluate the genetic influence of ICAM-1 gene polymorphisms on the development of T1D and diabetic nephropathy. METHODS Five valid single nucleotide polymorphisms...

متن کامل

Blockade of KCa3.1 Ameliorates Renal Fibrosis Through the TGF-β1/Smad Pathway in Diabetic Mice

The Ca(2+)-activated K(+) channel KCa3.1 mediates cellular signaling processes associated with dysfunction of vasculature. However, the role of KCa3.1 in diabetic nephropathy is unknown. We sought to assess whether KCa3.1 mediates the development of renal fibrosis in two animal models of diabetic nephropathy. Wild-type and KCa3.1(-/-) mice, and secondly eNOS(-/-) mice, had diabetes induced with...

متن کامل

Cardiovascular Disease in Diabetic Nephropathy Patients: Cell Adhesion Molecules as Potential Markers?

Cardiovascular disease is a major complication of diabetes mellitus, especially for patients with diabetic nephropathy. The underlying factor or pathogenic mechanism that links diabetic nephropathy with cardiovascular disease is not known. The endothelial cell adhesion molecules, intercellular adhesion molecule-1 or vascular cell adhesion molecule-1, play a crucial role in the initiation of ath...

متن کامل

Markers of endothelial dysfunction and inflammation in type 1 diabetic patients with or without diabetic nephropathy followed for 10 years: association with mortality and decline of glomerular filtration rate.

OBJECTIVE We evaluated the association of biomarkers of endothelial dysfunction and inflammation with all-cause mortality and cardiovascular mortality and morbidity and decline in glomerular filtration rate (GFR) in type 1 diabetic patients. RESEARCH DESIGN AND METHODS We prospectively followed 199 type 1 diabetic patients with diabetic nephropathy and 192 patients with persistent normoalbumi...

متن کامل

The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells

A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012